Research in our lab explores new ways to control and utilize mechanical resonators by, ultimately, using the laws of quantum physics. Employing quantum control over mechanical devices offers fascinating perspectives in research and for applications. We focus on two experimental platforms:

Cavity optomechanics: In a cavity optomechanical system, light interacts with a mechanical resonator via radiation pressure. This radiation pressure force is used to exert control over the mechanical system. At the same time, the motion of the mechanical resonator acts back on the state of the light field. In our lab, we design, develop and explore novel cavity optomechanical devices for quantum information processing.

Levitated magnetomechanics: Levitation is a fascinating phenomenon in physics. Technologically, it offers the best isolation of an object from its surrounding environment. A levitated object can thus be used as an ultra-sensitive device for measuring external forces or accelerations. In our lab, we explore chip-based superconducting levitation of magnetic objects of various sizes for (quantum-enhanced) sensing and quantum experiments.