Research

Research in our lab explores novel ways to control and utilize mechanical resonators by, ultimately, using the laws of quantum physics. Employing quantum control over mechanical devices offers fascinating perspectives in research and for applications. We look at the following experiments.


com
Cavity optomechanics: In a cavity optomechanical system, light interacts with a mechanical resonator via radiation pressure. This radiation pressure force is used to exert control over the mechanical system. At the same time, the motion of the mechanical resonator acts back on the state of the light field. In our lab, we design, develop and explore novel cavity optomechanical devices for quantum information processing.

maglev
Levitated magnetomechanics: Levitation is a fascinating phenomenon in physics. Technologically, it offers the best isolation of an object from its surrounding environment. A levitated object can thus be used as an ultra-sensitive device for measuring external forces or accelerations. In our lab, we explore chip-based superconducting levitation of magnetic objects of various sizes for (quantum-enhanced) sensing and quantum experiments.

 

2dmat
Two-dimensional materials: Two-dimensional materials have unique properties that make them appealing for a range of novel applications. We will use quantum emitters in these materials for generating non-classical photon states as well as for controlling the motion of the free-standing layer.